MC10110

Dual 3-Input/3-Ouput OR Gate

The ability to control three parallel lines from a single point makes the MC10110 particularly useful in clock distribution applications where minimum clock skew is desired. Three V_{CC} pins are provided and each one should be used.

- $\mathrm{P}_{\mathrm{D}}=80 \mathrm{~mW}$ typ/pkg (No Load)
- $t_{p d}=2.4 \mathrm{~ns}$ typ (All Outputs Loaded)
- $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=2.2 \mathrm{~ns}$ typ ($20 \%-80 \%$)

LOGIC DIAGRAM

$V_{C C 1}=$ PIN 1,15
$\mathrm{V}_{\mathrm{CC}}=\mathrm{PIN} 16$
$\mathrm{V}_{\mathrm{EE}}=\mathrm{PIN} 8$

DIP
PIN ASSIGNMENT

Pin assignment is for Dual-in-Line Package.
For PLCC pin assignment, see the Pin Conversion Tables on page 18 of the ON Semiconductor MECL Data Book (DL122/D).

ON Semiconductor

http://onsemi.com

MC10110

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Pin Under Test	Test Limits							Unit
			$-30^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$		
			Min	Max	Min	Typ	Max	Min	Max	
Power Supply Drain Current	IE	8		42		30	38		42	mAdc
Input Current	linH	5, 6, 7		680			425		425	$\mu \mathrm{Adc}$
	$\mathrm{l}_{\text {inL }}$	5, 6, 7	0.5		0.5			0.3		$\mu \mathrm{Adc}$
Output Voltage Logic 1	V_{OH}	$\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline-1.060 \\ & -1.060 \\ & -1.060 \end{aligned}$	$\begin{aligned} & -0.890 \\ & -0.890 \\ & -0.890 \end{aligned}$	$\begin{aligned} & -0.960 \\ & -0.960 \\ & -0.960 \end{aligned}$		$\begin{aligned} & \hline-0.810 \\ & -0.810 \\ & -0.810 \end{aligned}$	$\begin{aligned} & -0.890 \\ & -0.890 \\ & -0.890 \end{aligned}$	$\begin{aligned} & \hline-0.700 \\ & -0.700 \\ & -0.700 \end{aligned}$	Vdc
Output Voltage Logic 0	V OL	$\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & -1.890 \\ & -1.890 \\ & -1.890 \end{aligned}$	$\begin{aligned} & -1.675 \\ & -1.675 \\ & -1.675 \end{aligned}$	$\begin{aligned} & \hline-1.850 \\ & -1.850 \\ & -1.850 \end{aligned}$		$\begin{aligned} & -1.650 \\ & -1.650 \\ & -1.650 \end{aligned}$	$\begin{aligned} & \hline-1.825 \\ & -1.825 \\ & -1.825 \end{aligned}$	$\begin{aligned} & \hline-1.615 \\ & -1.615 \\ & -1.615 \end{aligned}$	Vdc
Threshold Voltage Logic 1	VOHA	$\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline-1.080 \\ & -1.080 \\ & -1.080 \end{aligned}$		$\begin{aligned} & -0.980 \\ & -0.980 \\ & -0.980 \end{aligned}$			$\begin{aligned} & -0.910 \\ & -0.910 \\ & -0.910 \end{aligned}$		Vdc
Threshold Voltage Logic 0	V OLA	2 3 4		$\begin{aligned} & \hline-1.655 \\ & -1.655 \\ & -1.655 \end{aligned}$			$\begin{aligned} & \hline-1.630 \\ & -1.630 \\ & -1.630 \end{aligned}$		$\begin{aligned} & \hline-1.595 \\ & -1.595 \\ & -1.595 \end{aligned}$	Vdc
Switching Times (50Ω Load) Propagation Delay										ns
	t5+2+	2	1.4	3.5	1.4	2.4	3.5	1.5	3.8	
	t5-2-	2	1.4	3.5	1.4	2.4	3.5	1.5	3.8	
	t5+3+	3	1.4	3.5	1.4	2.4	3.5	1.5	3.8	
	t5-3-	3	1.4	3.5	1.4	2.4	3.5	1.5	3.8	
	t5+4+	4	1.4	3.5	1.4	2.4	3.5	1.5	3.8	
	t5-4-	4	1.4	3.5	1.4	2.4	3.5	1.5	3.8	
Rise Time (20 to 80\%)	t_{2+}	2	1.0	3.5	1.1	2.2	3.5	1.2	3.8	
	${ }^{\text {t }}$ +	3	1.0	3.5	1.1	2.2	3.5	1.2	3.8	
	t_{4+}	4	1.0	3.5	1.1	2.2	3.5	1.2	3.8	
Fall Time (20 to 80\%)	t_{2}	2	1.0	3.5	1.1	2.2	3.5	1.2	3.8	
	${ }^{\text {t3- }}$	3	1.0	3.5	1.1	2.2	3.5	1.2	3.8	
	${ }^{4}$	4	1.0	3.5	1.1	2.2	3.5	1.2	3.8	

ELECTRICAL CHARACTERISTICS (continued)

@ Test Temperature				TEST VOLTAGE VALUES (Volts)					(VCc) Gnd	
				$\mathrm{V}_{\text {IHmax }}$	$\mathrm{V}_{\text {ILImin }}$	$\mathrm{V}_{\text {IHAmin }}$	VILAmax	$\mathrm{V}_{\text {EE }}$		
			$\begin{array}{r} -30^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +85^{\circ} \mathrm{C} \end{array}$	-0.890	-1.890	-1.205	-1.500	-5.2		
				-0.810	-1.850	-1.105	-1.475	-5.2		
				-0.700	-1.825	-1.035	-1.440	-5.2		
Characteristic		Symbol	Pin Under Test	TEST VOLTAGE APPLIED TO PINS LISTED BELOW						
		$\mathrm{V}_{\text {IHmax }}$		$\mathrm{V}_{\text {ILImin }}$	$\mathrm{V}_{\text {IHAmin }}$	VILAmax	$\mathrm{V}_{\text {EE }}$			
Power Supply Drain Current			${ }_{\text {I }}$ (8					8	1, 15, 16
Input Current		linH	5, 6, 7	*				8	1, 15, 16	
		linL	5, 6, 7		*			8	1, 15, 16	
Output Voltage	Logic 1	V_{OH}	$\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \\ & 7 \end{aligned}$				$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,15,16 \\ & 1,15,16 \\ & 1,15,16 \end{aligned}$	
Output Voltage	Logic 0	V OL	$\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$					$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,15,16 \\ & 1,15,16 \\ & 1,15,16 \end{aligned}$	
Threshold Voltage	Logic 1	V ${ }_{\text {OHA }}$	$\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$			5 6 7		$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,15,16 \\ & 1,15,16 \\ & 1,15,16 \end{aligned}$	
Threshold Voltage	Logic 0	VOLA	$\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$				5 6 7	8 8 8	$\begin{aligned} & 1,15,16 \\ & 1,15,16 \\ & 1,15,16 \end{aligned}$	
Switching Times Propagation Delay	(50 Ω Load)	$\begin{aligned} & \mathrm{t}_{5+2+} \\ & \mathrm{t} 5-2- \\ & \mathrm{t} 5+3+ \\ & \mathrm{t} 5-3- \\ & \mathrm{t}+4+ \\ & \mathrm{t} 5-4- \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$			Pulse In	Pulse Out	-3.2 V	+2.0 V	
						5 5 5 5 5 5	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,15,16 \\ & 1,15,16 \\ & 1,15,16 \\ & 1,15,16 \\ & 1,15,16 \\ & 1,15,16 \end{aligned}$	
Rise Time	(20 to 80\%)	$\begin{aligned} & \mathrm{t}_{2+} \\ & \mathrm{t}_{3+} \\ & \mathrm{t}_{4+} \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$			$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,15,16 \\ & 1,15,16 \\ & 1,15,16 \end{aligned}$	
Fall Time	(20 to 80\%)	$\begin{aligned} & \mathrm{t}_{2-} \\ & \mathrm{t}_{3-} \\ & \mathrm{t}_{4-} \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$			$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,15,16 \\ & 1,15,16 \\ & 1,15,16 \end{aligned}$	

* Individually test each input using the pin connections shown.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

MC10110

PACKAGE DIMENSIONS

PLCC-20
FN SUFFIX
PLASTIC PLCC PACKAGE
CASE 775-02
ISSUE C

MC10110

PACKAGE DIMENSIONS

PDIP-16
P SUFFIX
PLASTIC DIP PACKAGE

CASE 648-08
notes:
ISSUE R

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN

FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.740	0.770	18.80	19.55
B	0.250	0.270	6.35	6.85
C	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.70	1.02	1.77
G	0.100 BSC		2.54 BSC	
H	0.050 BSC		1.27 BSC	
J	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
M	0°	10°	0°	10°
S	0.020	0.040	0.51	1.01

MC10110

Notes

MC10110

Notes

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor - European Support
German Phone: (+1) 303-308-7140 (M-F 2:30pm to 5:00pm Munich Time)
Email: ONlit-german@hibbertco.com
French Phone: (+1) 303-308-7141 (M-F 2:30pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com
English Phone: (+1) 303-308-7142 (M-F 1:30pm to 5:00pm UK Time) Email: ONlit@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support
Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800-4422-3781
Email: ONlit-asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549
Phone: 81-3-5740-2745
Email: r14525@onsemi.com
Fax Response Line: 303-675-2167 800-344-3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

